1. Амелькин Н.И. Кинематика и динамика твердого тела (кватернионное изложение): Учебное пособие. - М.: МФТИ, 2000. - 62 с.
2. Бранец А. В., Шмыглевский И. П. Применение кватернионов в задачах ориентации твердого тела /А.В. Бранец, И.П. Шмыглевский // М.: Наука, 1973. - 320 с.
3. Гамильтон У.Р. О кватернионах, или о новой системе мнимых величин в алгебре // Избранные труды. Оптика. Динамика. Кватернионы. М.: «Наука» - 1994 - сс. 345 - 391.
4. Каратаев Е.А. Кватернионы и 3-х мерные повороты. Практический подход. М.,: 2000 – 432 с.
5. Конвей Дж. Х, Смит Д. А. О кватернионах и октавах, об их геометрии, арифметике и симметриях. Москва, МЦНМО, 2009.– 184 с.
6. Полякова Н. С. Кватернионы и их применение / Полякова Н. С., Дерябина Г. С. ; ред. Полякова Н. С. ; МГТУ им. Н. Э. Баумана. - М. : Изд-во МГТУ им. Н. Э. Баумана, 2003. - 54 с.
7. Adler S.L. Quaternionic Quantum Field Theory. Phys. Rev. Let. 1985; 55:783–786. doi: 10.1103 / PhysRevLett.55.783.
8. Adler S.L. Mechanics and Quantum Fields. Oxford University Press; New York, NY, USA: 1995.
9. Adler S.L. Quantum Theory as an Emergent Phenomenon. Cambridge University Press; Cambridge, UK: 2004.
10. Arbab A.I., Al Ajmi M. The Quaternionic Commutator Bracket and its Implications. Symmetry. 2018; 10:513. doi: 10.3390/sym10100513.
11. Ali A.F., Das S., Vagenas E.C. Discreteness of Space frоm the Generalized Uncertainty Principle. Phys. Let. B. 2009;678:497–499. doi: 10.1016/j.physletb.2009.06.061.
12. Bell J.S. On the Einstein Podolsky Rosen Paradox. Physics. 1964;1:195–200. doi: 10.1103/PhysicsPhysiqueFizika.1.195.
13. Bell J.S. In: Schrödinger–Centenary Celebration of a Polymath. Kilmister C.W., editor. Cambridge University Press; Cambridge, UK: 1987. pp. 41–52.
14. Bell J.S. Bertlmann’s Socks and the Nature of Reality. J. Phys. Colloq. 1981;42:C2-41–C2-62. doi: 10.1051/jphyscol:1981202.
15. Bohm D., Hiley B.J. The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge; Philadelphia, PA, USA: 1993. p. 397.
16. Bohm D.A. Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables. I and II. Phys. Rev. 1952;85:166–193;. doi: 10.1103/PhysRev.85.166.
17. Białynicki-Birula I., Mycielski I.J. Nonlinear Wave Mechanics. Ann. Phys. 1976;100:62–93. doi: 10.1016/0003-4916(76)90057-9.
18. Birkhoff G., von Neumann J. The Logic of Quantum Mechanics. Ann. Math. 1936;37:823–843. doi: 10.2307/1968621.
19. Bodurov T. Solitary Waves Interacting with an External Field. Int. J. Theor. Phys. 1996;35:2489–2499. doi: 10.1007/BF02085757.
20. Bodurov T. Derivation of the Nonlinear Schrödinger Equation frоm First Principles. Ann. Fond. Louis Broglie. 2005;30:343–352.
21. Brumby S.P., Joshi G.C. Global Effects in Quaternionic Quantum Field Theory. Found. Phys. 1996;26:1591–1599. doi: 10.1007/BF02282122.
22. Brown H.R., Holland P. Simple Applications of Noether’s First Theorem in Quantum Mechanics and Electromagnetism. Am. J. Phys. 2004;72:34–39;. doi: 10.1119/1.1613272.
23. Brumby S.P., Joshi G.C. Experimental Status of Quaternionic Quantum Mechanics. Chaos Solitons Fract. 1996;7:747–752;. doi: 10.1016/0960-0779(95)00001-1.
24. Chen P., Kleinert H. Deficiencies of Bohm Trajectories in View of Basic Quantum Principles. Electr. J. Theor. Phys. 2016;13:1–12.
25. Danielewski M. The Planck–Kleinert Crystal. Z. Naturforsch. 2007;62a:564–568. doi: 10.1515/zna-2007-10-1102.
26. Danielewski M., Sapa L. Diffusion in Cauchy Elastic Solid. Diffus. Fundam. 2020;33:1–14.
27. Danielewski M., Sapa L. Nonlinear Klein–Gordon equation in Cauchy–Navier elastic solid. Cherkasy Univ. Bull. Phys. Math. Sci. 2017;1:22–29.
28. 32. Deb S., Das S., Vagenas E.C. Discreteness of Space frоm GUP in a Weak Gravitational Field. Phys. Lett. B. 2016;755:17–23. doi: 10.1016/j.physletb.2016.01.059.
29. Helge Kragh: Dirac – A Scientific Biography, Cambridge University Press, Cambridge 1990.
30. Feynman R.P. The Character of Physical Law. 2nd ed. The MIT Press; Cambridge, MA, USA: 2017.
31. Finkelstein D., Jauch J.M., Schiminovich S., Speiser D. Foundations of Quaternion Quantum Mechanics. J. Math. Phys. 1962;3:207–220. doi: 10.1063/1.1703794.
32. Gantner J. On the Equivalence of Complex and Quaternionic Quantum Mechanics. Quantum Stud. Math. Found. 2018;5:357–390. doi: 10.1007/s40509-017-0147-5.
33. Gell-Mann M. In: The Nature of the Physical Universe. Huff D., Prewett O., editors. John Wiley & Sons; New York, NY, USA: 1979. p. 29.
34. Ghirardi G.C. The Interpretation of Quantum Mechanics: Where do we stand? J. Phys. Conf. Ser. 2009;174:012013. doi: 10.1088/1742-6596/174/1/012013.
35. Hagar A. Experimental Metaphysics: The Double Standard in the Quantum-Information Approach to the Foundations of Quantum Theory. Stud. Hist. Philos. Mod. Phys. 2007;38:906–919. doi: 10.1016/j.shpsb.2007.04.002.
36. Home D. Conceptual Foundations of Quantum Physics: An Overview frоm Modern Perspectives. Plenum Press; New York, NY, USA: 1997.
37. Horodecki R. De Broglie Wave and its Dual Wave. Phys. Lett. 1981;87A:95–97. doi: 10.1016/0375-9601(81)90571-5.
38. Horodecki R. Superluminal Singular Dual Wave. Lett. Novo Cimento. 1983;36:509–511. doi: 10.1007/BF02817964.
39. Hossenfelder S. Testing Superdeterministic Conspiracy. J. Phys. Conf. Ser. 2014;504:012018;. doi: 10.1088/1742-6596/504/1/012018.
40. Kleinert H. Gravity as Theory of Defects in a Crystal with Only Second–Gradient Elasticity. Ann. Phys. 1987;44:117–119. doi: 10.1002/andp.19874990206.
41. Maxwell J.C. A Dynamical Theory of the Electromagnetic Field. Phil. Trans. R. Soc. London. 1865;155:459–512;. doi: 10.1098/rstl.1865.0008.
42. Nottale L. Origin of Complex and Quaternionic Wavefunctions in Quantum Mechanics: The Scale-Relativistic View. Adv. Appl. Clifford Algebr. 2008;18:917–944;. doi: 10.1007/s00006-008-0108-5.
43. Panda1 S., Muni M.K., Vasundhara B., Tripathy L.K. Study the Relations for Different Components of Isospin with Quark States. Int. J. Pure Appl. Phys. 2016;12:61–69.
44. Popper K. The Logic of Scientific Discovery. Hutchinson & Co.; London, UK: Basic Books Inc.; London, UK: 1959.
45. Thompson S.P. The Life of Lord Kelvin, Baron Kelvin of Largs, Volume II. Macmillan; New York, NY, USA: 1910. p. 1070.
46. Weinberg S. Letter on 24 September 1996. [(accessed on 6 November 2020)]; Available online: https://bohmian-mechanics.net/weingold.html.
47. Weng Z.-H. Field Equations in the Complex Quaternion Spaces. Adv. Math. Phys. 2014;201:450262. doi: 10.1155/2014/450262.
48. Yang C.N. High Energy Nuclear Physics; Proceedings of the Seventh Annual Rochester Conference; Rochester, NY, USA. 15–19 April 1957; New York, NY, USA: Midwestern Universities Research Association, distributed by Interscience Pubulishing, Inc.; 1957. p. IX-26.