ВВЕДЕНИЕ 3
1. ЖЕСТКОКРЫЛЫЕ 5
1.2 Жук Zophobas atratus 12
2.МИКРОБИОМ КИШЕЧНИКА НАСЕКОМЫХ 16
2.1 Микробиом кишечника жука 20
2.2. Значение изучения микробиома насекомых 23
ЗАКЛЮЧЕНИЕ 26
Список литературы 27
Читать дальше
Изучение микробных сообществ, связанных с насекомыми, играет большое значение для человека. Это объясняется высокой ролью насекомых в сельском хозяйстве, в переработке пластика, разработке новых лекарств. Кроме того, в последнее время уделяется внимание изучению потенциала микробиома кишечника насекомых в таких областях, как биотехнология, учитывая, что некоторые микроорганизмы производят молекулы для биотехнологического и промышленного применения
На сегодняшний день большинство исследований, направленных на характеристику роли кишечного микробиома насекомых, основаны на высокопроизводительном секвенировании гена 16S рРНК и/или метагеномике.
Информация о микробиоме кишечника жуков необходима для лучшего понимания роли микробов, составляющих микробные сообщества их хозяев, а также для определения областей их практического применения. В этой работе выполнен детальный анализ литературы по микробиому кишечника насекомых, в т.ч. жуков Callipogon relictus реликтовый усач и Zophobas atratus. Показано как далеко продвинулись ученые в характеристике функциональности кишечника насекомых, а также рассмотрены перспективные области применения полученных знаний.
Читать дальше
. Zhang C. X., Brisson J. A., Xu H. J. Molecular mechanisms of wing polymorphism in insects //Annual Review of Entomology. – 2019. – Т. 64. – С. 297-314.
. Conti E. et al. Biological control of invasive stink bugs: review of global state and future prospects //Entomologia Experimentalis et Applicata. – 2021. – Т. 169. – №. 1. – С. 28-51.
. Hopkins B. R., Kopp A. Evolution of sexual development and sexual dimorphism in insects //Current opinion in genetics & development. – 2021. – Т. 69. – С. 129-139.
. Goulson D. The insect apocalypse, and why it matters //Current Biology. – 2019. – Т. 29. – №. 19. – С. R967-R971.
. Skretas G. et al. Engineering bugs for the discovery of new drugs against diseases caused by protein misfolding and aggregation //12 September, Wednesday. – Т. 1. – С. 11.
. Kim S. et al. West meets East: How do rainforest beetles become circum-Pacific? Evolutionary origin of Callipogon relictus and allied species (Cerambycidae: Prioninae) in the New and Old Worlds //Molecular Phylogenetics and Evolution. – 2018. – Т. 125. – С. 163-176.
. Lee S. G. et al. Historical review and occurrence records of Callipogon relictus Semenov, 1899 (Coleoptera, Cerambycidae) in Gwangneung Forest, South Korea with suggestions for species conservation //ZooKeys. – 2021. – Т. 1024. – С. 1.
. Yi D. A., Kuprin A. V., Bae Y. J. Distribution of the longhorned beetle Callipogon relictus (Coleoptera: Cerambycidae) in Northeast Asia // Zootaxa. – 2018. – Т. 4369. – №. 1. – С. 101-108.
. Lee S. G. et al. Survey research on the habitation and biological information of Callipogon relictus Semenov in Gwangneung forest, Korea and Ussurisky nature reserve, Russia (Coleoptera, Cerambycidae, Prioninae). ZooKeys 792: 45–68. – 2018.
. Lee S. G. et al. A review of host plants of Callipogon (Eoxenus) relictus Semenov (Coleoptera: Cerambycidae: Prioninae), a Korea natural monument, with a new host, Quercus aliena Blume //Journal of Asia-Pacific Entomology. – 2019. – Т. 22. – №. 1. – С. 353-358.
. Lee S. G. et al. Identification of a New Host Plant of Callipogon relictus Semenov (Coleoptera: Cerambycidae) in South Korea //Korean journal of applied entomology. – 2020. – Т. 59. – №. 4. – С. 357-360.
. Park H. C. et al. Taxonomy of introduced commercial insect, Zophobas atratus (Coleoptera: Tenebrionidae) and a comparison of DNA barcoding with similar tenebrionids, Promethis valgipes and Tenebrio molitor in Korea //Journal of Sericultural and Entomological Science. – 2013. – Т. 51. – №. 2. – С. 185-190.
. Kim S. Y. et al. Developmental characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) larvae in different instars //International Journal of Industrial Entomology. – 2015. – Т. 30. – №. 2. – С. 45-49.
. Jabir M. D. A. R., Jabir S. A. A. R., Vikineswary S. Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile //African Journal of Biotechnology. – 2012. – Т. 11. – №. 24. – С. 6592-6598.
. Kwak K. W. et al. Optimal hatching conditions of Zophobas atratus (Coleoptera: Tenebrionidae) eggs under various culture conditions //Journal of Asia-Pacific Entomology. – 2021. – Т. 24. – №. 4. – С. 1107-1115.
. Kim H. R. et al. Biodegradation of polystyrene by Pseudomonas sp. isolated frоm the gut of superworms (larvae of Zophobas atratus) //Environmental science & technology. – 2020. – Т. 54. – №. 11. – С. 6987-6996.
. Douglas A. E. The molecular basis of bacterial–insect symbiosis //Journal of Molecular Biology. – 2014. – Т. 426. – №. 23. – С. 3830-3837.
. Moran N. A., Ochman H., Hammer T. J. Evolutionary and ecological consequences of gut microbial communities //Annual Review of Ecology, Evolution, and Systematics. – 2019. – Т. 50. – №. 1. – С. 451.
. Munoz-Benavent M. et al. Insects’ potential: understanding the functional role of their gut microbiome //Journal of Pharmaceutical and Biomedical Analysis. – 2021. – Т. 194. – С. 113787.
. Mikaelyan A. et al. Diet is the primary determinant of bacterial community structure in the guts of higher termites //Molecular ecology. – 2015. – Т. 24. – №. 20. – С. 5284-5295.
. Yun J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host //Applied and Environmental Microbiology. – 2014. – Т. 80. – №. 17. – С. 5254-5264.
. Brune A., Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution //Annual review of microbiology. – 2015. – Т. 69. – С. 145-166.
. Hammer T. J. et al. Caterpillars lack a resident gut microbiome //Proceedings of the National Academy of Sciences. – 2017. – Т. 114. – №. 36. – С. 9641-9646.
. Tinker K. A., Ottesen E. A. Phylosymbiosis across deeply diverging lineages of omnivorous cockroaches (order Blattodea) //Applied and environmental microbiology. – 2020. – Т. 86. – №. 7. – С. e02513-19.
. Case R. J. et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies //Applied and environmental microbiology. – 2007. – Т. 73. – №. 1. – С. 278-288.
. Banos S. et al. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms //BMC microbiology. – 2018. – Т. 18. – №. 1. – С. 1-15.
. Duguma D. et al. Temporal variations of microbiota associated with the immature stages of two Florida Culex mosquito vectors //Microbial ecology. – 2017. – Т. 74. – №. 4. – С. 979-989.
. McLean A. H. C. et al. Host relatedness influences the composition of aphid microbiomes //Environmental microbiology reports. – 2019. – Т. 11. – №. 6. – С. 808-816.
. Yang S. S. et al. Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization //Science of The Total Environment. – 2021. – Т. 756. – С. 144087.
. Pivato A. F. et al. Hydrocarbon-based plastics: Progress and perspectives on consumption and biodegradation by insect larvae //Chemosphere. – 2022. – С. 133600.
. Marmulla R., Harder J. Microbial monoterpene transformations—a review // Frontiers in microbiology. – 2014. – Т. 5. – С. 346.
. Mereghetti V., Chouaia B., Montagna M. New insights into the microbiota of moth pests // International Journal of Molecular Sciences. – 2017. – Т. 18. – №. 11. – С. 2450.
. Briones-Roblero C. I. et al. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages // PloS one. – 2017. – Т. 12. – №. 4. – С. e0175470.
. Rizzi A. et al. Characterization of the bacterial community associated with larvae and adults of Anoplophora chinensis collected in Italy by culture and culture-independent methods // BioMed research international. – 2013. – Т. 2013.
. Akhoundi M. et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies // PLoS neglected tropical
Читать дальше