Актуальность темы. Математика предоставляет человеку сильные инструменты для анализа и осознания мира вокруг, помогая в решении как теоретических, так и прикладных вопросов. Когда современные эксперты переводят вопросы из экономики, транспорта, управления или других сфер на математическую лексику, они могут применять многогранность и глубину математических инструментов.
Математика, несомненно, является языком Вселенной. От древних цивилизаций до современных научных исследований, математика служила надежным инструментом для понимания и интерпретации явлений вокруг нас. На протяжении веков человечество стремилось понять мир, используя разные методы и подходы: от философии и религии до науки и искусства. Сегодня, в эпоху информационных технологий и глобальной связанности, разнообразные области знания все чаще сталкиваются и переплетаются, стремясь создать всеобъемлющую картину мира. В этом контексте роль математики как объединяющего элемента становится еще более очевидной и важной. Она предоставляет методы и инструменты, позволяющие связывать разные научные и культурные дисциплины, формировать новые парадигмы и создавать общий язык понимания современного мира.
Решения, достигнутые через экономико-математические методы, могут подкрепить или опровергнуть предположение, прогнозировать или создать наилучший план действий для реального проекта.
В отличие от других наук, математика представляет глобальные и ясные логические структуры для изучения реальности. Ее основная задача – разработка логических моделей, описывающих явления в природе, технике и обществе. Эти математические модели представляют собой конструкции, которые отражают форму объекта и численные отношения между его параметрами. Работая с моделью, можно получить новую информацию о реальном объекте, основанную на математической теории.
Если модель точно отображает явление, она может раскрывать новые закономерности и предоставлять математический анализ условий для решения возникающих вопросов. Эти модели строятся на особенном языке, полном чисел и символов.
В сочетании с информацией, современная математика становится универсальным инструментом, обучая профессионалов правильно формулировать цели и анализировать возможные сценарии для нахождения лучших решений.
Цель работы изучить роль математики в объединении разных подходов к пониманию современного мира.
Задачи исследования:
- рассмотреть исторический контекст понимания математики.
- проанализировать практическое применение и построение математических моделей.
- изучить особенности математического стиля мышления.
Предмет исследования - математическое и имитационное моделирование.
Объект исследования – математическое мышление.
Методы исследования: аналитический.
Структура работы состоит из введения, трех глав, заключения, списка использованной литературы.
Читать дальше
1.1 Понимание математики как формирование математической картины мира
Существуют различные мнения о том, что такое понимание в математике, каждое из которых подчёркивает отдельные элементы: визуальные образы , способность к формализации и созданию алгоритмов решений , способность к созданию корректных связей и прочее. Тем не менее, универсального мнения по этому вопросу пока нет. В этом контексте представляется новый взгляд на данную задачу, основанный на принципе картины мира.
«Научное представление о мире» и термин «картина мира» трактуются по-разному. В дальнейшем примем следующее понимание: «Картина мира – это универсальные представления о мире, его структуре, разновидностях объектов и их связях. Все представления мира можно отличить по двум ключевым аспектам: 1) уровню обобщения и 2) методам моделирования действительности» . Исследование и классификация «научных представлений о мире» были выполнены В.С. Степиным .
МКМ – это структурированная система абстракций и взаимосвязей, включая числовые структуры, уравнения, функции, геометрические формы, неравенства и так далее. В контексте математического образования МКМ позволяет выявить основные концепции теории в связи с другими математическими доктринами, создать математические модели явлений окружающего мира и развивать математические навыки студентов .
Читать дальше
2.1 Этапы и подходы к построения математической модели
В процессе создания моделей различают такие ключевые моменты ( рисунок 1):
1. Изучение исследуемого объекта и определение основных требований к модели. Первый шаг к созданию модели – это детальное описание интересующего нас объекта или процесса.
2. Формирование концепции и математическое описание задачи. На этом этапе уточняются основные характеристики объекта, исключая неважные детали и влияния.
3. Глубокий анализ и валидация предложенной модели. Чтобы удостовериться в корректности математического представления, выполняются необходимые проверки.
4. Выбор методик решения и их обоснование. Разработанная модель проверяется различными методами, включая взаимную валидацию.
5. Разработка решений или внедрение алгоритма в программное обеспечение. Этот шаг детально рассматривается в контексте компьютерного моделирования.
6. Оценка соответствия модели реальности. Здесь устанавливается, насколько модель соответствует действительности и исходным допущениям, а также сравнивается с другими методами или экспериментальными данными.
7. Эффективное применение разработанной модели. Необходимо анализировать результаты, полученные с помощью модели, как с качественной, так и с количественной точки зрения.
Читать дальше
3.1 Основные характеристики математического мышления
Математическое мышление представляет собой уникальную и интригующую область человеческой когнитивной деятельности. Это способность ума структурировать, анализировать и решать проблемы с использованием числовых и абстрактных концепций.
В то время как каждый человек обладает определенным уровнем этого вида мышления, его основные характеристики и глубина проникновения могут существенно различаться.
Понимание этих характеристик не только открывает путь к пониманию сущности математической дисциплины, но и высвечивает методы развития и применения математического мышления в повседневной жизни.
На основании гипотезы, выдвинутой Л.М. Фридманом, приходим к пониманию, что развитие мышления, направленное на решение проблем, неизбежно должно включать обучение моделированию. Это подразумевает введение в учебный процесс методов познания через моделирование. Инструментом решения практических задач становится математическое моделирование.
Таким образом, гипотеза Л.М. Фридмана указывает на важность включения прикладных задач в обучение для развития математического восприятия студентов. Мышление в рамках математики имеет уникальные характеристики, определяемые особенностью математических объектов и применяемых методов. В.А. Крутецкий выделяет различные аспекты мыслительной активности, именуя их математическими навыками :
1. Процесс сбора математических данных: способность к абстрактному пониманию математического контента, распознаванию формы задачи.
Читать дальше
В ходе курсовой работы была рассмотрена важнейшая роль математики в формировании и объединении различных подходов к пониманию современного мира. В целом можно выделить следующие ключевые выводы:
Математика, с давних времён, занимает особое место в культуре человечества, создавая уникальное математическое представление о мире. Она предоставляет нам основу для понимания закономерностей, лежащих в основе реальности.
С течением времени методы и подходы математики постоянно совершенствовались, позволяя человеку глубже проникать в суть происходящих явлений.
Построение математических моделей стало фундаментом для анализа и предсказания поведения реальных систем. Этот инструментарий стал неотъемлемым элементом многих научных исследований.
Благодаря современным математическим методам, мы можем моделировать даже самые сложные системы, что позволяет выявлять скрытые закономерности и предсказывать результаты различных экспериментов.
Математическое мышление отличает глубина анализа, системность и строгость. Такой стиль мышления позволяет выделять ключевые аспекты, игнорируя второстепенные детали.
Рассмотрение прикладных задач и их решение с использованием математических методов способствует формированию и развитию абстрактного мышления, что становится ценным навыком в различных областях знания.
Математика, безусловно, играет ключевую роль в объединении различных путй понимания современного мира. В непрерывно меняющемся и становящемся всё более сложным обществе, она служит универсальным языком, позволяющим специалистам разных направлений находить общий язык.
Через математические модели и методы анализа мы можем исследовать сложные явления, прогнозировать будущие сценарии и объединять знания из разных областей науки. Её абстрактный характер позволяет нам устанавливать связи между явлениями, казалось бы, не связанными между собой. Таким образом, математика не просто помогает в объединении различных подходов, но и способствует более глубокому и целостному пониманию сложной мозаики реальности. Наши усилия в интеграции знаний из разных дисциплин, опираясь на математические инструменты, позволят нам лучше понимать и совершенствовать мир вокруг нас.
Читать дальше
1. Выготский Л.С. Психология развития человека / Л.С. Выготский. - Москва: Смысл, 2005. – 1136 с
2. Гнеденко Б.В., Орлов А.И. Роль математических методов исследования в кардинальном ускорении научно-технического прогресса. - Заводская лаборатория. 1988. Т.54. No.1. С.1-4.
3. Горбачев В.И. Содержательно-теоретический подход к обучению математике в категории «математической картины мира» / В.И. Горбачёв // Вестник Брянского государственного университета. - 2013. - № 1-1. - С. 94-100.
4. Губарь, Ю.В. Введение в математическое программирование / Ю.В. Губарь.— Москва : Интернет-Университет информационных технологий, 2007.— 199 с
5. Крутецкий В.А Психология математических способностей школьников М Просвящение, 1968 – С. 385
6. Лебедев С.А. Философия науки: Словарь базовых терминов / С.А. Лебедев. - Москва: Академический проспект, 2004. – 320 с.
7. Леонтьев А.Н. Деятельность. Сознание. Личность / А.Н. Леонтьев. - Москва: Политиздат, 1975. - 115 с.
8. Методика преподавания математики в средней школе. Общая методика. Учеб. Пособие для студентов физ-мат. Фак пед ин-тов 2-е изд., пе-рераб и доп. М..Просвещение, 1980 – С. 108
9. Налимов В.В. Теория эксперимента. - М.: Наука, 1971. - 208 с.
10. Орлов А.И. Методологические проблемы математического моделирования в стандартизации и управлении качеством продукции. – В сб.: Математическое моделирование социальных процессов. - М.: Академия общественных наук при ЦК КПСС, 1989. С.112-114.
11. Орлов А.И. Статистика объектов нечисловой природы в экспертных оценках. – В сб.: Прогнозирование научно-технического прогресса. Тезисы докладов III Всесоюзной научной школы (Минск, 10-16 марта 1979 г.). - Минск: Изд-во Белорусского научно-исследовательского института научно-технической информации и технико-экономических исследований Госплана БССР, 1979. С.160-161.
12. Осипов Г.С., Панов А.И. Знаковая картина мира субъекта деятельности / Г.С. Осипов, А.И. Панов, Н.В. Чудова, Ю.М. Кузнецов. - Москва: Физматлит, 2017. – 260 с.
13. Панов А.И. Исследование методов, разработка моделей и алгоритмов формирования элементов знаковой картины мира субъекта деятельности: дисс. … канд. физ.- мат. Наук / А.И. Панов. - Москва: 2015. – С.68
14. Пуанкаре А. О науке. - М.: Наука, 1990. - 736 с.
15. Рохваргер А.Е., Шевяков А.Ю. Математическое планирование научно-технических исследований. - М.: Наука, 1975. - 440 с.
16. Степин В.С. Теоретическое знание. Структура. Историческая эволюция / В.С. Степин. - Москва: Прогресс-Традиция. - 2003. – 744 с.
17. Трусова П.В. Введение в математическое моделирование : уч. пособие / под ред. П.В. Трусова.— Москва : Университетская книга, Логос, 2007.— 440 с.
18. Хинчин А.Я Педагогические статьи –М: АПН РСФСР, 1963 – С. 141-144
19. Холодная М.А. Психология интеллекта / М.А. Холодная. - СПб.: Питер. - 2002. – 335 с.
20. Хромов Г.С. Наука, которую мы теряем. - М.: Космосинформ, 1995. - 104 с.
21. Шадрина И.В. Понятийные образы в начальном математическом образовании / И.В. Шадрина // Герценовские чтения. Начальное образование. - Т.2. - Вып.1. - СПб.: Изд. ВВМ, 2011. – С. 143–148
22. Яблонский А.И. Математические модели в исследовании науки. - М.: Наука, 1986. - 352 с.
23. Ярошевского М. Г. Социально-психологические проблемы науки. Ученый и научный коллектив / Сб. статей под ред. М.Г. Ярошевского. - М.: Наука, 1973. - 252 с.
24. Aspinwall L., Shaw K.L., Presmeg N.C. Uncontrollable mental imagery: Graphical connections between a function and its derivative / L. Aspinwall [and other] // Educational Studies in Mathematics. - 1997. - Vol. 33(3). - P. 301–317
25. Nesher P. Are Mathematical Understanding and Algorithmic Performance Related? / P. Nesher // For the Learning of Mathematics. - № 6( 3). - P. 2–9.
26. Skemp R.R. [1976]. Relational understanding and instrumental understanding / R.R. Skemp // Mathematics Teaching. – 1976. - № 77. - P. 20–26.
Читать дальше