С термином «задача» люди постоянно сталкиваются в повседневной жизни как на бытовом, так и на профессиональном уровне. Каждому из нас приходится решать те или иные проблемы, которые зачастую мы называем задачами. В широком смысле слова под задачей понимается некоторая ситуация, требующая исследования и разрешения человеком.
Текстовой задачей будем называть [6, 3] описание некоторой ситуации (явления, процесса) на естественном и (или) математическом языке с требованием либо дать количественную характеристику какого-то компонента этой ситуации (определить числовое значение некоторой величины по известным числовым значениям других величин и зависимостям между ними), либо установить наличие или отсутствие некоторого отношения между ее компонентами или определить вид этого отношения, либо найти последовательность требуемых действий.
Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие (или действия) должно быть выполнено для получения ответа на требование задачи.
В каждой задаче можно выделить:
• числовые значения величин, которые называются данными, или известными (их должно быть не меньше двух);
• некоторую систему функциональных зависимостей в неявной форме, взаимно связывающих искомое с данными и данные между собой;
• требование, которое надо выполнить, или вопрос, на который надо найти ответ.
Числовые значения величин и существующие между ними закономерности, т.е. количественные и качественные характеристики объектов задачи и отношений между ними, называют условиями (или условием) задачи.
Читать дальше
Перед ознакомлением с понятием «задача» в начальной школе необходимо провести подготовительную работу.
Необходимо создать у учащихся готовность к выбору арифметических действий при решении соответствующих задач: они должны усвоить знание тех связей, на основе которых выбираются арифметические действия, знание объектов и жизненных ситуаций, о которых говорится в задачах.
До решения простых задач определённого вида ученики усваивают знания о связях операций над множествами с арифметическими действиями, т. е. конкретный смысл арифметических действий. Например, операция объединения непересекающихся множеств связана с действием сложения. Позже школьники узнают, что отношения «больше» и «меньше» (на несколько единиц и в несколько раз) связаны с арифметическими действиями, т. е. конкретный смысл выражений «больше на . . . », «больше в . . . раз», «меньше на . . . », «меньше в . . . раз». Они овладевают взаимосвязью между компонентами и результатами арифметических действий, изучают правила нахождения одного из компонентов арифметических действий по известным результату и другому компоненту.
При ознакомлении с решением первых простых задач ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению (задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи).
При решении составных задач ученики должны уметь устанавливать не одну связь, а систему связей, т. е. устанавливать несколько связей, выстраивая их в определенном порядке. Подготовкой к решению составных задач будет не только усвоение учащимися соответствующих связей, но и умение вычленять систему связей, иначе говоря, разбивать составную задачу на ряд простых, последовательное решение которых и будет решением составной задачи. Важно на подготовительной ступени знакомить детей с объектами, о которых говорится в задачах (например, с величинами), а также с соответствующими ситуациями, описанными в задачах, организуя специальные наблюдения жизненных ситуаций.
Читать дальше
Работа, проведенная на подготовительном этапе к знакомству с текстовой задачей, позволяет организовать деятельность учащихся, направленную на усвоение ее структуры и на осознание процесса ее решения.
При этом существенным является не отработка умения решать определенные типы (виды) текстовых задач, а приобретение учащимися опыта в семантическом и математическом анализе различных текстовых конструкций задач и формирование умения представлять их в виде схематических и символических моделей.
Провести первый урок по этой теме довольно сложная методическая задача для учителя. Важно, чтобы в результате проведённой работы учащиеся осознали - на что будет направлена их дальнейшая деятельность. Предлагаем детям сравнить тексты [10, 49]:
Какой текст можно назвать задачей, а какой нет?
o Маша нашла 7 лисичек, а Миша на 3 лисички больше.
o Маша нашла 7 лисичек, а Миша 5. Сколько всего лисичек нашли Миша и Маша?
Этим задание учитель должен вывести детей на обсуждение структуры задачи:
Можно ли назвать текст задачей, если в нём нет вопроса? Если да, то что вы скажете о таких текстах:
o Сколько всего учеников в классе?
o На сколько больше марок у Пети, чем у Иры?
Можно ли назвать текст задачей, если в нём только вопрос?
После этого дети формулируют вывод: любая задача состоит из условия и вопроса.
После этого предлагаем им составить условия к этим вопросам.
Читать дальше
1. Бантова М.А. Методическое пособие к учебнику «Математика. 1 класс»: Пособие для учителя / М.А. Бантова, Г.В., Г.В. Бельтюкова, С.В.Степанова. – 2-е изд. – М.: Просвещение, 2012. – 63 с. – ISBN 5-09-011234-7
2. Бантова М.А., Бельтюкова Г.В. Методика преподавания математики в начальных классах: Учеб. Пособие для учащихся школ. отд-ний пед. уч-щ (спец. № 2001)/Под ред. М.А. Бантовой 3-е изд., испр.-М.: Просвещение, 1913.-335 с., ил.
3. Белошистая А.В. Обучение решению задач в начальной школе. Книга для учителя. – М.: «ТИД «Русское слово – РС», 2013. – 188 с.
4. Боровик С.С. Курсовые и выпускные квалификационные работы. Методические рекомендации. – М., 2011. – 32 с.
5. Истомина Н.Б. Методика обучения математике в начальных классах. Москва, 2012 – 251с.
6. Истомина Н.Б. Методические рекомендации к учебнику «Математика. 1 класс». - М.: ЛИНКА – ПРЕСС, 2011 –79с.
7. Истомина Н.Б., Нефёдова И.Б. Математика. 2 класс: Учебник для четырёхлетней начальной школы. – Смоленск, Издательство «Ассоциация XXI век», 2011. – 176 с.
8. Зайцев В.В. Математика для младших школьников: Метод пособие для учителей и родителей. – М.: Гуманит. изд. центр ВЛАДОС, 2011. – 72 с.: ил.
9. Левитас Г.Г. Нестандартные задачи в курсе математики начальных классов // Начальная школа №5, 2011.
10. Стойлова Л.П. Математика: учебник для студ. высш. пед. учеб. заведений / Л.П.Стойлова. – М.: Издательский центр «Академия» 2017. – 432 с.
Читать дальше