1 E.L. Lieu, T.U. Nguyen, et.al. Amino acids in cancer // Exp. Mol. Med. – 2020. – 52(1). – P. 15-30.
2 W.D. Sroka, B.A. Boughton, et.al. Determination of amino acids in urine of patients with prostate cancer and benign prostate growth // Eur. J. Cancer. – 2017. – 26. – P. 131-134.
3 W.A.H. Waterval, J.L.J.M. Scheijen, et.al. Quantitative UPLC-MS/MS analysis of underivatised amino acids in body fluids is a reliable tool for the diagnosis and follow-up of patients with inborn errors of metabolism // Clin. Chim. Acta. – 2009. – 407(1-2). – P. 36–42
4 X. Bi, C.J. Henry Plasma-free amino acid profiles are predictors of cancer and diabetes development // Nutr. Diabetes. – 2017. – 7. – P. 17-26.
5 Bouatra S., Mandal R., et.al. The Human Urine Metabolome // PLoS ONE. – 2013. – 8(9). – e73076.
6 G. Wu Amino acids: metabolism, functions, and nutrition // Amino Acids. – 2009. – 37. – P. 1–17.
7 Zhang Y., McNeill E., et.al. Urine derived cells are a potential source for urological tissue reconstruction // J Urol. – 2008. – 180(5). – P. 2226-2233.
8 Genchi G. An overview on D-amino acids // Amino Acids. – 2017. – 49. – P. 1521–1533.
9 P. Newsholme, K. Bender, et.al. Amino acid metabolism, insulin secretion and diabetes // Biochem Soc Trans. – 2007. – 35(5). – P. 1180–1186.
10 Li P., Yin Y-L., et.al. Amino acids and immune function // Cambridge University Press. – 2007. – 2(98). – 899p.
11 Song, C. Xu, H. Kuroki, Y. Liao, M. Tsunoda Recent trends in analytical methods for the determination of amino acids in biological samples // J. Pharm. Biomed. Anal. – 2018. –147. – P. 35–49,
12 S. Ferre´, V. Gonza´lez-Ruiz, D. Guillarme, S. Rudaz Analytical strategies for the determination of amino acids: Past, present and future trends // J. Chromatogr. B Anal. Technol. Biomed, Life Sci. – 2019. – 1132. – e121819.
13 J.P. Violi, D.P. Bishop, M.P. Padula, J.R. Steele, K.J. Rodgers, Considerations for amino acid analysis by liquid chromatography-tandem mass spectrometry: A tutorial review // TrAC - Trends Anal. Chem. – 2020. – 131. – e116018.
14 M.P. Lorenzo, D. Dudzik, et.al. Optimization and validation of a chiral GC-MS method for the determination of free d-amino acids ratio in human urine: Application to a Gestational Diabetes Mellitus study // J. Pharm. Biomed. Anal. – 2015. – 107. – P. 480-487.
15 Thomas R.J. Exitatory Amino Acids in Health and Disease // Journal of the American geriatrics society. – 1995. – P. 1-17.
16. Sato T., Izawa K., et.al. Applications of fluorine-containing amino acids for drug design // European Journal of Medicinal Chemistry. – 2020. – 15(186). – e111826.
17 Kenji N., Yamakado M. The role of amino acid profiles in diabetes risk assessment // Current Opinion in Clinical Nutrition and Metabolic Care. – 2016. –5(19). – P. 328-335
18 A. Mayboroda, C. Neusüß, et.al. Amino acid profiling in urine by capillary zone electrophoresis - mass spectrometry // J. Chromatogr. A. – 2007. – 1159 (1-2). – P. 149–153.
19 An T. Hu Y. Lv, et.al. Targeted amino acid and related amines analysis based on iTRAQ®-LC-MS/MS for discovering potential hepatotoxicity biomarkers // J. Pharm. Biomed. Anal. – 2020. – 178. – e112812.
20 N. Gray, R.S. Plumb, et.al. A validated UPLC-MS/MS assay for the quantification of amino acids and biogenic amines in rat urine // J.Chromatogr. B Anal. Technol. Biomed, Life Sci. – 2019. – 1106-1107. – P. 50–57.
21 C. Seo, S. Hwan Kim, et.al. Simultaneous Determination of 35 Organic Metabolites Including Amino Acids, Creatine, Creatinine, and Oxidized and Reduced Glutathione in Lung Tissue, Plasma and Urine Using Liquid Chromatography-Tandem Mass Spectrometry // Anal. Lett. – 2020. – 53 (3). – P. 469–481.
22 T. Roggensack, B. Merz, et.al. Targeted ultra-performance liquid chromatography/tandem mass spectrometric quantification of methylated amines and selеcted amino acids in biofluids // Rapid Commun. Mass Spectrom. – 2020. – 34. P. 1–10.
23 E. O¨ztürk Er, B. O¨zbek, et.al. Determination of seventeen free amino acids in human urine and plasma samples using quadruple isotope dilution mass spectrometry combined with hydrophilic interaction liquid chromatography – Tandem mass spectrometry // J. Chromatogr. A. – 2021. – 1641. – e461970.
24 G.S. Zhou, Y.C. Yuan, et.al. Hydrophilic interaction chromatography combined with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction for determination of underivatized neurotransmitters in dementia patients’ urine samples // Anal. Chim.Acta. – 2020. – 1107. – P. 74–84.
25 C. Virgiliou, G. Theodoridis, et.al. Quantification of endogenous aminoacids and aminoacid derivatives in urine by hydrophilic interaction liquid chromatography tandem mass spectrometry // J. Chromatogr. A. – 2021. – 1642. P. 1-17.
26 Z. Tekin, E.O. Er, S. Bakırdere Determination of glycine in body fluids at trace levels using the combination of quadrupole isotope dilution strategy and Liquid Chromatography-Quadrupole Time of Flight-Tandem Mass Spectrometry // Meas.: J. Int. Meas. Confed. – 2019. – 146. – P. 606–612.
27 M.Saylan, E.O. et.al. An accurate and sensitive analytical method for the simultaneous determination of glycine, methionine and homocysteine in biological matrices by matrix matching strategy and LC–quadrupole-time-of-flight-MS/MS, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. – 2020. – 239. – 237p.
28 S.C. Nanita, L.G. Kaldon Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis // Anal. Bioanal. Chem. – 2016. – 408(1). – P. 23–33.
29 M.M. Rebollido-Fernandez, D.E. Castin˜eiras, et.al. Development of electrospray ionization tandem mass spectrometry methods for the study of a high number of urine markers of inborn errors of metabolism // Rapid Commun. Mass Spectrom. – 2012. – 26(18). – P. 2131–2144,
30. N. Xu, Z.-Q. Zhu, et.al. Direct detection of amino acids using extractive electrospray ionization tandem mass spectrometry, Fenxi Huaxue // Chinese, J. Anal. Chem. – 2013. – 41 (4). – P. 523–528.
31 R. Gonza´lez-Domínguez, R. Castilla-Quintero, et.al. Development of a metabolomic approach based on urine samples and direct infusion mass spectrometry // Anal. Biochem. – 2014. – 465. P. 20–27.
32 N.C. van de Merbel Quantitative determination of endogenous compounds in biological samples using chromatographic techniques // TrAC - Trends Anal. Chem. – 2008. – 27(10). – P. 924–933.
33 M. Jaffe, Ueber den Neiderschlag, welchen Pikrinsӓre in normalen Harn erzeugt und über eine neue Reaktion des Kreatinins // Z.Physiol.Chem. – 1886. – 10 P. 391–400.
34 M.T. Ferna´ndez-del-Campo-García, A.M. Casas-Ferreira, E. Rodríguez-Gonzalo, B. Moreno-Cordero, J.L. P´erez-Pavo´n, Development of a fast and reliable methodology for the determination of polyamines in urine by using a guard column as a low-resolution fractioning step prior to mass spectrometry. Comparison with flow injection-mass spectrometry analysis // Microchem. J. – 2020. – 158. – e105223.