СОДЕРЖАНИЕ 3
ВВЕДЕНИЕ 4
ГЛАВА 1. АНАЛИЗ УСТРОЙСТВ И ПРИНЦИПОВ РАБОТЫ 6
1.1. Виды сканеров 6
1.2.Принципы работы различных сканеров 8
1.3. Программное обеспечение для сканирования 11
ГЛАВА 2. ОСОБЕННОСТИ СКАНИРОВАНИЯ 13
2.1. Особенности сканирования текста 13
2.2. Особенности сканирования изображения 14
2.3. Распознавание текста 15
ЗАКЛЮЧЕНИЕ 21
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 22
Читать дальше
Автоматическое зрительное восприятие на сегодняшний день не достигает совершенства человеческого восприятия текста. Главная причина этого заключается в неумении строить достаточно полные и семантически выразительные компьютерные модели предметной области.
Проанализировав существующие методы распознавания текстов, можно сделать вывод, что лучше всего использовать метод структурно-пятенного шаблона, так как он объединяет в себе достоинства многих методов и благодаря этому является достаточно гибким чтобы применить его при распознавании рукописного текста.
В результате работы была рассмотрена задача распознавания текста и выделения графического материала. Основное внимание уделено сегментации символов и графического материала. Рассмотрен основной алгоритм работы разрабатываемой программы с учетом особенностей исходных данных. Проведен анализ различных научных работ по данной тематике.
Все больше растет популярность сканеров для домашнего и офисного пользования. Счастливый обладатель даже самого простого сканера гордится тем, что его фотографии хранятся не только в привычном бумажном виде, но и могут быть записаны на компакт-диск, опубликованы на Web-странице или отправлены на другой конец света по электронной почте. А возможности распознавания текста! Насколько проще перевести документ в электронный вид, быстро отсканировав страницу, чем заново набирать текст. Каждый, кто представляет, сколь разнообразно применение современных технологий ввода изображений, понимает, как может расширить его возможности сканер.
Читать дальше
1. Ravina M. Optical Character Recognition / M.Ravina, I.Supriya, D.Nilam [Электронный ресурс]. – Режим доступа: https://pdfs.semanticscholar.org/6a4b/4f04d...
2. Thomas K. Optical Character Segmentation and Recognition frоm a Rochester Flag / K.Thomas, S.Jonathan [Электронный ресурс]. – Режим доступа: https://www.cs.rochester.edu/~brown/242/assts/termprojs/vision.pdf
3. Абраменко А. Принципы распознавания / А. Абраменко – K:.Компьютер–пресс, 2017 – 123 с.
4. Балахонцева А. Система распознавания символов на изображениях со сложным фоном / А.Балахонцева, А.Годоба, Н.Тьен [Электронный ресурс]. – Режим доступа: http://www.graphicon.ru/html/2013/papers/250-253.pdf
5. Батманова С. К вопросу определения понятия сетевых СМИ // Excelion: информ. портал. — [Б.м., 2006-2007]. — URL: http://articles.excelion.ru/science/info/57227607.html
6. Борисов Е. Сегментация изображения текста / Е.Борисов [Электронный ресурс]. – Режим доступа: http://mechanoid.kiev.ua/cv-text-image-segmentator.html
7. Гайдуков Н.П. Обзор методов распознавания рукописного текста / Н.П.Гайдуков, Е.О.Савкова [Электронный ресурс]. – Режим доступа: http://masters.donntu.ru/2012/fknt/gaydukov/library/5_gaydukov.pdf
8. Гайдуков Н.П. Распознавание рукописного текста / Н.П.Гайдуков [Электронный ресурс]. – Режим доступа: http://masters.donntu.ru/2012/fknt/gaydukov/diss/index.htm
9. Давыдов И. Массмедиа российского Интернета. Основные тенденции развития и анализ текущей ситуации: аналит. докл. // Рус. журн. — 2000. — 28 сент. — URL: http://old.russ.ru/politics/20000928_davydov.html
10. Касьян К.Н. Разработка модифицированного метода распознавания текста на стандартизированном изображении / К.Н.Касьян, В.В.Братчиков, В.В.Шкарупило [Электронный ресурс]. – Режим доступа: http://journals.uran.ua/eejet/article/download/43047/41599
11. Кучуганов А.В. , Лапинская Г.В. Распознавание рукописных текстов / А.В. Кучуганов, Г.В. Лапинская – Ижевск:.Мир, 2006 – 514 с.
12. Леонтьев В.П. «Новейшая энциклопедия персонального компьютера 2003». – М.: «ОЛМА-ПРЕСС», 2003. - 920с.
13. Личканенко И.С. Методы обработки изображений и распознавания образов для задачи обнаружения номерных знаков транспортных средств / И.С.Личканенко, В.Н.Пчелкин [Электронный ресурс]. – Режим доступа: http://masters.donntu.ru/2013/fknt/lichkanenko/library/article1.htm
14. Саймон Х. Нейронные сети: полный курс / Х.Саймон // Вильямс. - Москва, 2016. - с. 1104.
15. Соколов Н.Г. Исследование и разработка метода распознавания рукописных цифр / Н.Г.Соколов [Электронный ресурс]. – Режим доступа: http://masters.donntu.ru/2017/fknt/sokolov/diss/index.htm
16. Сосенков А.Ю. Определение номерных знаков транспорта с помощью методов обработки изображений / А.Ю.Сосенков, А.И.Секирин [Электронный ресурс]. – Режим доступа: http://masters.donntu.ru/2015/fknt/sosenkov/library/article1.htm
17. Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознавани / М. Шлезингер, В. Главач – М.:2014 – 112 c.
18. Шлезингер М., Главач В. Структурное распознавание / М. Шлезингер , В. Главач – Киев: Наукова думка, 2006 – 300 с.
19. Шумский А.А. Программное средство распознавания печатного текста / А.А.Шумский, Е.В.Бычкова // ИУСМКМ – Донецк : Сборник материалов VIII Международной научно-технической конференции в рамках III Международного Научного форума
Читать дальше