Введение2
1. Теоретические основы флюоресцентной микроскопии3
1.1. Явление флюоресценции3
1.2. Устройство флюоресцентного микроскопа12
2. Методы создания флюоресцентных РНК-зондов15
3. Протоколы окрашивания живых клеток при помощи флюоресцентных РНК-зондов19
Заключение20
Список литературы21
Читать дальше
Микроскопия с двухфотонным возбуждением оказывается чрезвычайно полезной при динамической визуализации живых клеток в толстых образцах, особенно в интактных тканях. Благодаря этому методу стало возможным проведение многих экспериментов, невыполнимых традиционными методами, или в которых этими методами не удавалось получить необходимую информацию. Благодаря способности лазера с синхронизованными модами (импульсного лазера) создавать достаточную плотность фотонов в фокальной точке, двухфотонное возбуждение происходит лишь в фокальной плоскости. Преимущество локализованного возбуждения состоит в том, что испускание света ограничено узкой фокальной областью, что избавляет от необходимости использования точечной диафрагмы. Более того, ограниченная область возбуждения уменьшает фототоксичность исследуемых тканей, поскольку фотоповреждение в значительной степени ограничено фокальным участком.
Хотя микроскопия с двухфотонным возбуждением не дает более высокого разрешения изображения, чем конфокальная микроскопия, она позволяет проникать в толстые образцы на большую глубину. Большая глубина проникновения возможна частично из-за геометрии «открытой» точечной диафрагмы в двухфотонном микроскопе, а также благодаря отсутствию внефокусного поглощения возбуждающего света и его меньшему рассеянию (из-за большей длины волны). Чтобы в полной мере воспользоваться возможностью глубокого проникновения, необходимо использовать конфигурацию детектирования нерассканированного сигнала, которая позволяет значительно повысить эффективность приема рассеянных флуоресцентных фотонов. Преимущества двухфотонного возбуждения уже не требуют подтверждений и позволяют проводить эксперименты, невыполнимые с помощью конфокальной микроскопии. Этот метод становится все более популярным благодаря технологическим достижениям и удешевлению оборудования, поэтому число интересных экспериментальных открытий, полученных с его помощью, скорее всего, будет расти.
Читать дальше
1. Балалаева И.В., Сергеева Е.А., Катичев А.Р. Оптическая микроскопия в исследовании структуры и функций биологических объектов.– Нижний Новгород: Нижегородский госуниверситет, 2012. – 58 с.
2. Бережнов А.В., Зинченко В.П., Федотова Е.И.,Яшин В.А. Применение флуоресцентной микроскопии висследованиях динамики Са2+ в клетках. Пущино, 2007. - 65 с.
3. Гаврилов В. Б. Определение параметров связывания флуоресцентного зонда пирронового красного с сывороточным альбумином человека // Биофизика. — 2001.– Т. 46, Вып. 1. — С. 39–42.
4. Добрецов Г. Е. Флуоресцентные зонды в исследовании клеток, мембран и липопротеинов.– М.: Наука, 1989.– 277 с.
5. Летута С. Н., Маряхина В. С., Пашкевич С. Н., Рахматуллин Р. Р. Длительная люминесценция органических красителей в клетках биологических тканей // Оптика и спектроскопия. ? 2011. ? Т. 110, № 1. ? С. 72–75.
6. Рогоза Л.А. Флуоресцентные зонды для исследования пептидов. Biotechnologia Аcta, V. 6, No5, 2013. – р. 108-113.
7. Сайфитдинова А.Ф. Двумерная флуоресцентная микроскопия для анализа биологических образцов. – СПб.: «СОЛО», 2008-72 с.
8. Татарец А. Л., Поврозин Е. А., Дюбко Т. С. И др. Новые длинноволновые флуоресцентные зонды для исследования белков // Тез. докл. XXI Междунар. науч.-практ. конф. «Применение лазеров в медицине и биологии», Одесса, 26–29 мая 2004.— C. 134.
9. Alander, J. T., Kaartinen, I., Laakso, A., Patila, T., Spillmann, T., Tuchin, V. V., Venermo, M., Valisuo, P. A Review of Indocyanine Green Fluorescent Imaging in Surgery. // International Journal of Biomedical Imaging (2012). DOI:10.1155/2012/940585. 940585.
10. Joseph R. Lakowicz Principles of Fluorescence Spectroscopy. — Springer Science+Business Media, 2006. — ISBN 978-0-387-31278-1
11. Lavis, L. D.; Raines, R. T. Bright Ideas for Chemical Biology // ACS Chemical Biology 3 (2008) (3) С. 142—155. DOI:10.1021/cb700248m.
12. Zheng, H.; Zhan, X.-Q.; Bian, Q.-N.; Zhang, X.-J. Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors // Chemical Communications 49 (2012) С. 429—447. DOI:10.1039/c2cc35997a.
Читать дальше